Beyond Homozygosity Mapping: Family-Control analysis based on Hamming distance for prioritizing variants in exome sequencing
نویسندگان
چکیده
A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks.
منابع مشابه
Whole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient
Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a gener...
متن کاملSuccessful identification of rare variants using oligogenic segregation analysis as a prioritizing tool for whole-exome sequencing studies
We aim to identify rare variants that have large effects on trait variance using a cost-efficient strategy. We use an oligogenic segregation analysis as a prioritizing tool for whole-exome sequencing studies to identify families more likely to harbor rare variants, by estimating the mean number of quantitative trait loci (QTLs) in each family. We hypothesize that families with additional QTLs, ...
متن کاملEditorial: The Post-Exome Era
The Iranian Rehabilitation Journal (IRJ) invites research papers on the genetic basis of single gene and complex disorders. This vastly dynamic branch of science will complement the multidisciplinary wealth of expertise in the fields of social welfare and rehabilitation. The past few years have witnessed outstanding research projects on the genetic causes of numerous debilitating disorders, suc...
متن کاملEX-HOM (EXome HOMozygosity): a proof of principle.
OBJECTIVE We provide the proof of principle that exome sequencing of only two affected siblings born to first-cousin parents is capable of directly identifying a single candidate gene for an autosomal recessive disorder. This strategy, which we call EX-HOM (EXome HOMozygosity), combines in a single step the capacity of exome sequencing to identify all the coding variants present in a genome wit...
متن کاملThe First Iranian Case of Mucopolysaccharidosis IIIC: Use of Homozygosity Mapping in a Consanguineous Pedigree
Mucopolysaccharidosis type IIIC (MPSIIIC) is a rare subtype of mucopolysaccharidosis disorder family caused by mutations in heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) gene. MPSIIIC is subdivided into four subtypes which have overlapping features, and are indistinguishable at clinical level. In populations with high consanguineous marriage rate, homozygosity mapping can be a good c...
متن کامل